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The properties of one-dimensional statistical systems are studied.
A consistent comparison of the values of the binary correlation func-

tion obtained from the configuration integral and from Bogolyubov
chain equations in various approximations is presented. The results
obtained here are discussed briefly.

The existing methods for studying the behavior of real statistical
systems are usually hased on perturbation theory, and the presence of
small parameters characterizing the proximity of the system to an
ideal system is assumed. Strongly interacting systems do not permit
the isolation of small parameters; therefore, there are no effective
methods for studying them at present. In this connection, it appears
to be of interest to turn to one-dimensional systems which enable the
investigation to be advanced much further and, in particular, per-
mit a consideration of the case of strong interaction. Comparison of
the exact results with approximate results obtained by methods for
decomposing chains of recurrence equations for correlation functions
[1] may be regarded as a qualitative criterion of the accuracy of the
latter.

Configuration integrals forone -dimensionalstatistical systems were
first obtained in reference [2]. Papers have recently appeared in
which one-dimensional models are studied by methods of the theory
of stochastic processes [3-6].

1. Consider one-dimensional equilibrium isother-
mal system consisting of N particles on a segment
of the Ox-axis of length L. The statistical properties

of the system can be studied by the Gibbs method.
Let (p, q) be the set of N momenta and N coordinates
of the particles in the system. As is known, the dis-
tribution function of such a system is of the form
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Here H is the hamiltonian of the system, k is the
Boltzmann constant, and T is the temperature. The
constant Z is called the statistical integral of the
system. From the normalization condition for the
distribution function

It is not difficult to show that in the case under
consideration
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Here m is the particle mass, h is Planck's con-
stant, and Uy the part of the function H depending
only on the coordinates. Thus, we obtain full in-
formation on the system if we can calculate Qy
(the configuration integral).

If the particles are impenetrable, then

0oy <L ap<lo. <oy L. (1.2)

In the approximation in which only closest neigh-
bors interact,
Uy = :’_", (D(\Tim‘if'i” + Up.

(IiKN—1)

Here ® is the particle interaction potential and
Uy, is the energy of interaction with the wall. If the
wall consists of particles of the same nature, then

Up =@ (z) + ® (L — zy)-

Employing the method of reference [2], with the
aid of the Laplace transformation, the convolution
theorem, and the method of steepest descent, we ob-
tain an expression for the configuration integral

g =\ efriewIgr,  (1.3)
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Here p is the pressure.

Let us take a model of the system in which the
particles are spheres of radius «a, interacting with
each other according to a law determined by choice
of the potential

DO (o — z)) = Oy (| — o) 4 K (ory — 7))

Here ® is the potential of the electric forces,
which we take in the form

Dy () =c0  (2<0),

@, =D, (a) (a/7)exp [y (a— )] (23 0.
We take the potential K(x) in the form of a mod-
ified Lennard-Jones potential

K(x) = o0 (z<a),

K (z) = 6w {0,/ 0)° [(a/ 2) — (a/ 2)*] (> a).

Here 6 is the depth of the potential well and w =
=wy/ (W, — wy). The first term characterizes the
close-range repulsion, the second the attraction at
greater distances. Usually, we take wy = 12 and
wy = 6 [8].

Henceforth, we shall express all quantities in
units of a (@ = 1) and introduce for convenience the
following notation

u = ﬁ(Del (1)7 X = 66:
According to (1.3),

n = yw ((,)2 / @4 )elosion)

e (pB) = (1.4)
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Here EV is an exponential integral function of v-th
order. In the purely electrostatic case (K = 0)

@ (pB) = (pB)* exp (— pP) +
+ 3 G enpeE, (B + m). (1.5)

We note that the term preceding the sum in (1.5)
is the result obtained for solid spheres [9].
For a "real" gas (g7 = 0)

(pB)"* exp (— pB) + 2 Gl B (0B). (1.6)

@ (pB) =

The prime means that a term is lacking in the
sum when m = 0 and n = 0, simultaneously.

2. Now we shall consider the computation of the
binary correlation function g(x) starting from the
expression (1.3) for the configuration integral. Let

AV (8, m) =P (€) dE (io P (€2 = 1) (2.1)

be the probability of discovering two specific par-
ticles of the system separated by (m — 1) others.
obviously, £ =|x, — Xy ml’ where k is the number
of the fixed particle. When m = 1 we find the distri-
bution of the nearest neighbor, when m = 2, that of
the second nearest neighbors, etc. We shall assign
to the configuration integrals of the subsystems
subscripts which indicate the number of particies
in the subsystem. Setting é= L — xyy _ m, it is not
difficult to obtain

P (E) = G C1QL—E)

O @) 2-2)

Going over to the asymptotic values (N —
L — %, L/N — 1l is a constant) yields

Yo (8) = {@ (PB)}™ Qm_s (§) exp (— pBE) (2.3)

~B{pi+D{Z)

B () = S whenm== 1 (2.4)
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i (5) "{(ij)}mszgs{q} ()™ e ds whenm > 1 -

The integration path includes all strips of the
integrand. With one particle fixed, the probability
of discovering any other particle at a distance of
from x to x + dx from the first one is equal to

AW (z) = L7'g (z) dx. (2.5)

Here g(x) is the one-dimensional analog of the
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radial distribution function. It follows from {2.1) and
(2.5) that

g () =12 bm (2) =

1o~ PPx

= = E{tp (pﬁ)}"’”ffe“ g (s)I™ ds. (2.6)

We shall denote the sums in (1.4)—(1.6) by R(s}.
As can be seen from (2.6), in order to compute g(x),
we must first find the residues at all poles of the

function
e—sx m
{4 R )

and then sum over m, Making use of the residue
theorem, and considering only those singulari-
ties that make a basic contribution to (2.8), we
finally get

for m=1,2,...

gz) =0

e 1 B ogm
8 (0) = 72 gy 3;1 (=T

=l1),

A—1
X 200 (= 0RO
k=0

(x>1). (2.7)

Here C are the binomial coefficients , and {A — k
— 1} denotes (A — k — 1)-ple differentiation. The
summation over m for fixed x is extended to values
of m satisfying the inequality x > m. When m = A =
=k + 1 (solid noninteracting spheres), we get the
result of reference [9}.

3. We shall now compute the binary correlation
function g(x), starting with the chain equations (1,
10}, and making use of the approximations of ref-
erence [11]. The Kirkwood hypothesis permits us
to express the triplet distribution function as a su-
perposition of binary functions, that is, F;(123) =
= g(12) g(23) g(31).

We introduce the correlation coefficients gjj =
=gjj — 1 and, for convenience, occasionally write
©=kT = 1/8.

Then we can obtain the following equations for
€yt

a
6»,0?1 In (1 -+ e = Fpy +
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(F (x) = — ‘?ﬂ)_l%ciﬁ)

The order of the particles is fixed; therefore
Xy3 = Xyp T Xp3. We write Xy, = X, X3 =y, and xy3 =
= x +y; and obtain an equation for determining &(x)

9

6;5111 (14 ¢ (z)] = F (2) + (3.1)
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(cont'd)

i

We now make use of an approximation analogous
to the approximation of reference [11],

Lzl_“_'_ﬂi)

]

(723 > r12),

1 i , 9
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By linearizing (3.1) and differentiating the re-

sult twice, we get the ordinary differential equa-
tion

448
(& ) + 22 =0, (3.2)
Let us consider some special cases.
1°. Let @ (x) = 1/x. Then, on the basis of (3.2)
d de 23
(7)) — =0
This implies that
g@) =1—¢(2) =1— ()™,
x =1/, (1 -+ V1 F 4o/ 10). (3.3)

It can be seen from (3.3) that, unlike the three-
dimensional case, there is no exponential decay of
g(x) with increasing x. This is connected with the
longer-range character of the forces in the
one-dimensional case.
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Fig, 1. From top to bottom: a) ideal
gas; b) w, = 6—attraction; c) solid
spheres; d) w; = 12—repulsion;

e) w, =1,

2°. Let us consider ® (x) ~+ x~. Equation (3.2)
takes the form

e ‘[E)+\€f: 0, £ve ()2 *=A'1, V= ?—B. (3.4)
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The plus and minus signs are associated with
attraction and repulsion, respectively.
In the case of repulsion

e@ =& ) ey fagesin - EEL (— g | 4w
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The constants C and € (1) may be determined if
we substitute x = 1 into (3.5) and (3.5) into (3.1), and
consider the expressions obtained in this way simul-
taneously. The expressions obtained for C and €(1)
are very cumbersome.
If we take only the attraction between particles
into consideration, the solution of equation (3.4) is
of the form

~w/2

e
e () =22 1

JlC‘/" (X2) — Ky sin (na)]‘(z“}"l ) %

@ - |
x (s ]/%)“YB (o)

(s =1/20).

(3.6)

Here J is a cylindrical function of the first kind
and Y a cylindrical function of the second kind. The
constant C is determined in the same way as for
(3.5) and is again very cumbersome.

3%, Let & (x) = (@/%) exp (— yx). The solution of
the linearized equation, in the form of a Neumann
series, is written

preac
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it Y mo.o —~Y
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Due to the rapid convergence of the series in
(3.7), the expression for £(x) can-be represented
with good accuracy in the form

— e (2) =B o) — B v (0 )l +

o e z e
+§‘ p {1 ¢! + ) z kZD( 1)1. Ic[ 11 :31 A(/I:)}.(?).S)
Here
A<x>=§ ,.Jrs{El (v (4 + 8)] — E, (15)} ds

1
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is a rapidly converging integral which can easily be
calculated approximately. As before, g (x) = 0 (x <
<1)and gx) =1 +e(x) (x= 1),

4°. In conclusion, let us consider the nonlinear-
ized equation for g(x) in the Kirkwood approxima -
tion. Turning from (x) to g(x), we rewrite (3.1) in
the form

d
.Elng(x)=

8

~tF @) +tlg@+9lg® —11F(z+9ds (3.9)
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¢

(o=l £) 55— 2.

The equation was solved by successive approx-
imation with the aid of a computer. The same var-
iations were considered in this case as in the lin-
earized case. The convergence of the solution was
investigated by the fixed point principle. The in-
vestigation showed that there exists a region of
values of the parameters £, £ where the succes-
sive approximations converge. We note that by
virtue of the fixed order of the particles, the val-
ue of the integral in equation (3.9) is smaller than
in the corresponding three-dimensional equation.
This leads to the lack of a clearly expressed short-
range order in the structure of the system (absence
of oscillations), that is, the nonlinearity of the equa-
tion has little effect.
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Fig, 2, From top to bottom: a)
wqy =12, I=2; b) solid spheres
I1=2;¢c)w;=6,1=2;d) w, =6,
[=2—equationlinearized;e) w =
=12, I=8;f} wy =6, I = 8—equa~
tion linearized; g) solid spheres,
l1=8; h) wy =86, [=8;1) w; =12,
l=8—equation linearized; j)w, =
= 12, [ = 2—equation linearized.

4. We have made a consistent comparison of the
binary correlation functions of a one-dimensional
system calculated with the aid of the configuration
integral in the nearest-neighbor approximation and
from chains of equations for the correlation func-
tions.
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Figure 1 shows the curves for ¢(p, T) deter-
mined in § 1. Curve 1 corresponds to an ideal gas,
2 to w, = 6 (attraction), 3 to solid spheres, 4to w; =
= 12 (repulsion), and 5 corresponds to w; = 1, Differ-
ent potentials with y = 0 yield curves between 2 and 3.
It can be seen from Fig, 1 that the maximum relative
divergence of the graphs is about 200% for the largest

p/e.
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Fig. 3. From top to bottom:
a) we=86, I=8, ap=0,25;
b)wy, =6, 1=8, af=1; ¢)
wy =6, 12, I =2, ap=1;d)
wy =6 and 12, I =16, af =
=0.25;8)w;=12,1=2, aff =
=11 f)wy;=12,1=8, af=1;
g) y=0.5 1=8, apfp=20,5;
hy y=0.5, I =16, af=1;1i)
vy=0,1,1=8, af=1,

Figure 2 shows values of g(x/a) for potentials of
the Lennard-Jones type and solid spheres. Damped
oscillations of the correlation functions calculated
from the configuration integral can be seen; this is
evidence of a clearly expressed short-range order.
Compared with the three~dimensional model, the
radius of the region of short-range order is signi-
ficantly greater in the one-dimensional case. As the
amplitude increases and the temperature decreases,
the amplitudes of the oscillations increase and the
region of oscillation occupies a larger area,

iV/ -

75 (z/§)
J 5 7

Fig, 4. (1)—y = 0.5, [ = 2; (2)—

y=0.1,1=2;(3)—y=0.5,1=4;

(4)~-solid spheres, {=8; (5)—y =

=0,5, I=8;(6)—y=0.1, |l =8;

()—® 1/x, L =8;(B)—y=0.5, I=
= 18,
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It can be seen from the curves in Fig. 3 that
g(x/a) calculated in the superposition approxima-
tion gives an asymptotically correct description of
the properties of the system, differing materially
from the exact value close to the boundary of the
particle. The linearized superposition approxima-
tion gives an even greater divergence from the
exact solution at small x/a and describes the asym-
ptotic properties well. We note that the sharpness
of the first peak is connected with the discontinous
nature of the potential. For comparison, g(x/a) for
solid spheres calculated from the configuration in-
tegral are shown by a dashed line.

Figure 4 shows graphs of g(x/a) for a purely
electrical interaction. Analogous comparisons are
made. The same conclusions can be drawn in re-
gard to the general nature of the bahavior of the
functions as in the preceding case. Also presented
are graphs of g(x/q) for the potential whose three-
dimensional analogs are the correlation functions
calculated in the Debye-Hickel approximation.

In conclusion, we thank I. G. Krutikov for great
assistance in developing the method of approximate
calculation and in writing the program for numeri-
cal solution of equation (3.9). The authors also thank
E. S. Kuznetsov, S. V. Tyablikov, and V. T. Khozya-
inov for discussion of the work and valuable com-
ments.
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